ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE SECONDA SESSIONE 2016 – SEZIONE A

SETTORE INDUSTRIALE

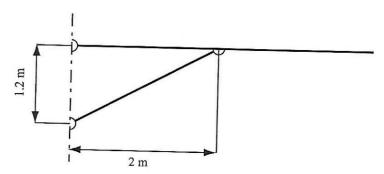
Prova Pratica di Progettazione

TEMA N. 14: TEMA DI AEROSPAZIALE

Il candidato risolva i seguenti esercizi, descrivendo le motivazioni a monte delle scelte risolutive intraprese, utilizzando disegni esplicativi ove necessario ed esplicando i calcoli eseguiti:

1) Si consideri un velivolo con le seguenti caratteristiche:

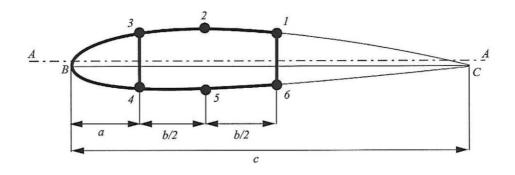
- Peso totale: Q=1200 kg


- Peso dell'ala pari al 10% del peso del velivolo

- Superficie alare: S=16.2 m²

- Apertura alare: b=11 m

Corda costante


- Fattore di carico massimo positivo: $n_{max}^+ = 4.4$

Supponendo che l'ala del velivolo sia controventata e che la semiala e il montante possano essere immaginati incernierati in corrispondenza della mezzeria del velivolo, invece che sulla fusoliera, si calcolino i carichi interni della semiala.

2) Si consideri un velivolo con le seguenti caratteristiche:

Superficie alare: 55m²
Allungamento alare: 8.9
Rastremazione: 0.23

ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE SECONDA SESSIONE 2016 – SEZIONE A SETTORE INDUSTRIALE

Prova Pratica di Progettazione TEMA N. 14: TEMA DI AEROSPAZIALE

Nella figura precedente è rappresentata una sezione generica dell'ala del velivolo (dove b = 0.3c, a = 0.2c e c rappresenta la corda): la parte resistente (in grassetto) è una sezione bicella a

sei correnti disposti simmetricamente rispetto all'asse A-A (si suppone la sezione già ridotta a

semiguscio).

I dati relativi alla sezione posta in mezzeria sono illustrati nelle seguenti tabelle:

Tabella 1: Dati relativi ai correnti (sezione mezzeria).

corrente	Area [mm ²]	distanza del corrente dalla corda BC [mm]	
1	550	360	
2	600	400	
3	600	360	
4	600	160	
5	600	200	
6	550	160	

Tabella 2: Dati relativi ai pannelli (sezione mezzeria).

pannello	lunghezza [mm]	spessore [mm]	area sottesa dal pannello rispetto al corrente 4 $(\Omega_{i,4})$ [mm ²]
1-2	620	1	200000
2-3	620	1	180000
3-4 curvo	1800	1	350000
3-4	520	1.2	0
4-5	600	1	≈ 0
5-6	600	1	≈ 0
6-1	520	1.2	315290

Si calcolino i margini di sicurezza a rottura per la sezione alare posta in corrispondenza della mezzeria del velivolo sapendo che:

- la condizione di carico è costituita da:
 - $^{\circ}$ due forze F_1 =210 kN e F_2 =170 kN, applicate rispettivamente in corrispondenza dei correnti 4 e 6 dirette verso l'alto
 - $^{\circ}\,$ un momento torcente di modulo pari a $100\;kNm,$ applicato in senso orario
 - ° un momento flettente rispetto all'asse A-A, di modulo pari a **1000 kNm** e che mette in compressione i correnti 1,2 e 3 e in trazione i correnti 4,5 e 6
- la rastremazione dell'ala è tale da mantenere normale alla mezzeria del velivolo sia il longherone anteriore (pannello 3-4) sia il piano costituito dall'insieme delle corde alari, di cui BC rappresenta la traccia nel piano di mezzeria del velivolo
- la rastremazione è lineare e il rapporto tra le dimensioni caratteristiche delle sezioni alari poste all'estremità e in mezzeria è sempre pari al rapporto di rastremazione alare
- l'ala del velivolo non presenta svergolamento
- il materiale con cui è realizzata l'ala è una lega di alluminio 7075 con sforzo normale ammissibile a rottura di 524 MPa e sforzo di taglio ammissibile a rottura di 462 MPa.